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There are two stages in the first-order Godunov-type schemes to update flow
variables: the gas evolution stage for the numerical fluxes across a cell interface
and the projection stage for the reconstruction of constant state inside each cell.
Ideally, the evolution stage should be based on the exact Euler solution, the so-called
Riemann solver. In this paper, we will show that some anomalous phenomena, such
as postshock oscillations, density fluctuation in the 2D shear wave, and pressure
wiggles at material interface in multicomponent flow calculations, are generated by
dynamical effects in the projection stage. Based on a physical model, we are going to
analyze qualitatively the averaging mechanism and compare our theoretical analysis
with numerical observations. c© 1998 Academic Press

1. INTRODUCTION

In the past two decades there has been tremendous progress in the development of numer-
ical methods for solving the Euler equations. The most promising method is the Godunov
scheme, where the Riemann solution is used for the flux evaluation, followed by the projec-
tion stage to construct a constant state inside each cell. Although the Godunov-type schemes
give robust and accurate numerical solutions in most cases, they can on occasions fail quite
miserably. Even the first-order Godunov method may give anomalous results, i.e. post-
shock oscillations, pressure wiggles in the multicomponent interface [6, 7, 14], carbuncle
phenomena and odd–even decoupling [11], and pressure fluctuations in the 2D shear wave
[5]. In an important paper, Quirk catalogued a number of situations in which anomalous
behavior is known to occur [13]. Since then, many papers have attempted to explain these
kinds of phenomena. For example, for the postshock oscillation, there exist many papers
related to its observation and explanation [3, 10, 13, 14]. Arora and Roe pointed out that
the intermediate states inside the shock layer do not lie on the Hugoniot curve [2]. Hence,
the Riemann solver generates a whole fan of waves and induces the postshock oscillations.
Jin and Liu explained this in the context of traveling wave solution and suggested that the
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unsteadiness in the momentum spike is the cause of the oscillations [6]. Karni and Canic
noticed that upwind scheme and Lax Friedrichs scheme behave differently here. They con-
cluded that the vanishing viscosity in Roe’s scheme at the shock region contributes to the
oscillations and derived the modified parabolic equations in the shock layer [7].

The current work benefits from all previous papers. Instead of analyzing a specific flux
function, we are focusing on the study of dynamical effects on the projection stage in
Godunov-type schemes. In order to understand the numerical behavior of the fluid, a physical
model for the dynamical averaging is constructed. It is well known that the first-order
Godunov method gives dissipative numerical solutions, and it is usually interpreted as
artificial viscosity effects. If the numerical fluxes are based on the exact Euler solution,
the dissipation must be added somehow in the projection stage. Our focal point in this
paper is to figure out qualitatively the projection mechanism, from which a few anomalous
phenomena are explained, which include postshock oscillations, density fluctuation in the
2D shear wave, and pressure wiggles at material interface in multicomponent gas flow.
Since the projection process is intrinsically included in all shock capturing schemes, these
phenomena should be universal. We fully agree with the conclusions obtained so far that the
possible cure for the postshock oscillation is to solve the viscous governing equation directly
in the gas evolution stage to dissipate the oscillation generated in the projection stage. Since
the projection dissipation depends on the velocity difference, in the two-dimensional case,
it will be mesh-oriented. As a result, the inhomogeneity of projection dissipation and the
inviscid Euler solution in gas evolution automatically trigger the shock front instabilities in
the 2D case, such as the carbuncle phenomena and odd–even decoupling in the Godunov
method [18].

In this paper, Section 2 analyzes the physical dynamics in the projection stage. Section 3
gives an explanation of postshock oscillations. Section 4 outlines the physical reasons for
the density fluctuation in the 2D shear flow, and Section 5 explains the pressure fluctuations
at material interface in multicomponent flow calculations. The last section is the conclusion.

2. PROJECTION DYNAMICS

We consider shock capturing schemes for the one dimensional Euler equations:

ρt + (ρU )x = 0,

(ρU )t + (ρU2 + P)x = 0, (1)

Et + (EU + PU)x = 0,

whereρ is the density,U is the velocity,ρU is the momentum,E = 1
2ρU2 +ρe is the total

energy,e is the internal energy, andP is the pressure. We assume that the gas is aγ -law gas,
i.e. P = (γ − 1)ρe, 1 ≤ γ ≤ 3. In the following, we are going to construct an underlying
physical model for shock-capturing schemes in solving the above equations. Based on this,
some observed artifacts will be explained in the following sections.

In order to understand the dynamic effects in the projection stage, let us construct a
physical model. This model is general and is not limited to the flows with shocks. Suppose
there is a discontinuity in the flow distribution, and the location of the discontinuity is inside
the numerical cellj . The left and right states inside cellj are(ρ1,U1, E1) and(ρ2,U2, E2)

in regions [xj −1/2, xj −1/2 + α1x] and [xj −1/2 + α1x, xj +1/2], respectively, where1x is
the cell size (see Fig. 1). In the following, we first assumeα = 1

2.
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FIG. 1. Subcell mixing in the averaging stage.

The projection averaging is based on the conservation of total mass, momentum, and
energy,

1

2
ρ1 + 1

2
ρ2 = ρ̄j ,

1

2
ρ1U1 + 1

2
ρ2U2 = ρ̄j Ūj , (2)

1

2
E1 + 1

2
E2 = Ēj ,

where ¯ρj , ρ̄j Ūj , Ēj are the averaged mass, momentum, and energy densities in cellj . From
the above equations, we have the average velocity,

Ūj = ρ1U1 + ρ2U2

ρ1 + ρ2
. (3)

So, after averaging, the kinetic energy in cellj becomes

Ēk = 1

4
(ρ1 + ρ2)Ū

2
j . (4)

However, before the averaging the original kinetic energy is

Ek = 1

4
ρ1U

2
1 + 1

4
ρ2U

2
2 . (5)

From Eq. (4) and Eq. (5), we knowEk ≥ Ēk and the lost kinetic energy is

1Ek = Ek − Ēk = 1

4

ρ1ρ2

ρ1 + ρ2
(U2 − U1)

2. (6)

Since the total energy is conserved in the projection stage, the decrease in kinetic energy
must correspond to the increase in the thermal energy. So, the projection is actually a
dissipative process to translate kinetic energy into thermal energy. From thermodynamics,
we can show that the entropy is increased in the above process.The transition from initial
density distributionsρ1 andρ2 to the final uniform density12(ρ1 + ρ2) is achieved through
an equivalent mass diffusion process.
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For the Godunov method, the flow variables inside each cell are updated through the
fluxes from the gas evolution stage and the averaging in the projection stage. If the exact
Euler equations are solved in the gas evolution stage, the flow behavior in the whole updating
process can be approximately described by the equations (the detailed derivation is given
in Appendix A)

ρt + (ρU )x = ερxx,

(ρU )t + (ρU2 + P)x = ε(ρUx)x,

Et + (EU + PU)x = 1

8
ε(ρUUx)x,

(7)

where the flux terms(ρU, ρU2 + P, EU + PU) are obtained from the Riemann solutions
in the gas evolution stage and the dissipative terms(ερxx, ε(ρUx)x,

1
8ε(ρUUx)x) are from

the projection stage. The viscous coefficientε is

ε ∼ 1

2
α(1 − α)

(1x)2

1t
, (8)

which depends on the location of the discontinuity as shown in Fig. 1. The dependence ofε

on1x and1t is due to the fact that the actual averaging process is taking place dynamically
over a whole time step inside each cell, although it can be interpreted as an instantaneous
process taking place at the end of each time step.

The diffusive and dissipative properties in the above model are not directly related to the
specific Euler fluxes across each cell interface. Using Gilbarg and Paolucci’s techniques[4],
the stationary shock structure can be obtained from Eq. (7) [19], where the main conclusions
are:

(1) ρ increases monotonically whileU decreases, asx varies from−∞ to +∞;
(2) the momentumρU is not a monotonic function ofx;
(3) the maximum value of momentumρU is independent ofε.

Points (1) and (2) have been analyzed based on the isentropic model in [6]. As pointed
out by Jin and Liu, the momentum spike is solely related to the mass diffusion term in the
continuity equation. Later, Karni and Canic found out that the the momentum spike has no
direct contributions to the postshock oscillations [7]. Based on Eq. (7), we can explain the
fact that the momentum peak value(ρU )max is a constant. From the continuity equation,
we have

(ρU )max ∼ ε(ρx)max.

Since the density variation on the leading order across a shock layer is proportional to [20]

(ρx)max ∼ ρ2 − ρ1

δx
∼ (ρ2 − ρ1)

2

lρ1
∼ C1(ρ2 − ρ1)

2

ερ1
,

whereδx is the shock thickness,l is the mean free path,(ρ1, ρ2) are the upstream and
downstream densities, andC1 is the upstream sound speed. So,(ρU )maxcan be approximated
as

(ρU )max ∼ ε(ρx)max ∼ C1(ρ2 − ρ1)
2

ρ1
,
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which is independent ofε. So, even with a time-dependent viscous coefficientε, such as
in the moving shock case,(ρU )max keeps a constant value . Theoretically, the maximum
momentum peak value(ρU )max should be a universal constant for all shock capturing
schemes if only projection dissipation is involved, such as the Godunov method. For the
BGK scheme, the constant momentum peak value has been observed [19] for both stationary
and moving shocks. All shock capturing schemes cannot converge to the Euler solutions in
l∞-norm.

3. POSTSHOCK OSCILLATIONS

The postshock oscillations have attracted much attention in the past years. The first
detailed account of this problem was given by Colella and Woodward [3]. After that Roberts
[14] compared different schemes and pointed out that the oscillations would occur for any
schemes with flux functions that give “exact” shock resolution such as Godunov and Roe’s
schemes. More recently, Quirk [13], Jin and Liu [6], Arora and Roe [2], and Karni and
Canic [7] have contributed greatly to the understanding and control of the oscillation. In
this paper, we are concentrating on the projection dynamics to understand this phenomena.

As analyzed in [19], there is a stationary shock structure from Eq. (7) for each constant
ε. The same conclusion has been obtained for the isentropic equations [6]. Ifε were really
a constant, such as in the stationary shock case, there would be no postshock oscillations.
However, for moving shocks, the discontinuity can be located at any place inside each cell
(xj −1/2 + α1x) and its location is changing with time. As a consequence,ε in the Eq. (7)
is a function of timet . For a moving shock with constant speed,α(t) is a periodic function,
and the period is equal to the time interval for the shock to cross a numerical cell,

T = 1x

Us
,

whereUs is the shock speed. So, the pulsating shock structure from Eq. (7) with unsteady vis-
cosity coefficient generates postshock oscillations. Similar conclusion have been obtained
in [6].

The continuing variation of kinetic energy due to averaging in the shock layer exerts a
forcing term on the downstream flow motion, which is similar to perturbing one end of
a string. The oscillations are generated and propagate along the string. As pointed out by
Karni and Canic [7], this behavior is only related to the momentum spike superficially.
Physically, even without the mass diffusion term in the continuity equation (7) and with
monotonic momentum distribution, the postshock oscillations will still be generated due to
the unsteady nature in the momentum and energy equations. This is probably the reason why
the momentum spike can be eliminated through a simple transformationρu → ρu − ε∂xρ,
but the postshock oscillations will remain the same [6]. We can validate the above obser-
vation in the following example. If applying the projection model to the moving contact
discontinuity wave, we can get the same mass diffusion term in the continuity equation
and consequently obtain the momentum spike. However, we will not find any numerical
oscillations here, because there is no time-dependent nonlinear dissipative mechanism in
the momentum and energy equations. Due to the equal velocitiesU1 =U2 on both sides of
the contact discontinuity,1Ek = 0 in Eq. (6) holds.

Based on the projection dynamics, we can explain the relation between the postshock
oscillation amplitude and the shock speed. As observed in [2, 10], the very slow and fast
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FIG. 2. Stationary shock located atx = 0.

moving shocks generate less oscillations. In order to qualitatively evaluate the relation,
let us consider the following model. Initially a stationary shock is located at cell interface
x = 0 with distributions(ρ2,U2, E2) and(ρ1,U1, E1) on the left and right sides, as shown
in Fig. 2. The upstream and downstream flow conditions are

ρ1 = 1,

U1 = −1, x ≥ 0, (9)

P1 = 1

γ M2
.

and

ρ2 = (γ + 1)M2

2 + (γ − 1)M2
ρ1,

U2 =
(

γ − 1

γ + 1
+ 2

(γ + 1)M2

)
U1, x ≤ 0, (10)

P2 =
(

2γ

γ + 1
M2 − γ − 1

γ + 1

)
P1,

whereM is the upstream Mach number. From the above flow conditions, we can get the
sound speedsC1 andC2 on both sides,

C1 =
√

γ P1/ρ1, C2 =
√

γ P2/ρ2.

For a moving shock, the flow velocities will be changed; i.e.,U1 →U1 +Us andU2 →
U2 + Us, whereUs is the shock speed. After each time step1t , the shock front will be
located atUs1t , see Fig. 3. In the numerical cell with shock, the lost kinetic energy due to
the averaging is

1Ek = 1

4

ρ11tUsρ2(1x − 1tUs)

ρ11tUs + ρ2(1x − 1tUs)
(U1 − U2)

2 for Us > 0. (11)

Based on the CFL condition (CFL number= 1), the time step is

1t = 1x

Max(|U1 + Us| + C1, |U2 + Us| + C2)
,
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FIG. 3. Moving shock with speedUs at time1t .

and Eq. (11) goes to

1Ek = 1

4

ρ1ρ2U∗(1 − U∗)
ρ1U∗ + ρ2(1 − U∗)

(U1 − U2)
21x for Us > 0, (12)

where

U∗ = |Us|
Max(|U1 + Us| + C1, |U2 + Us| + C2)

.

Similarly, for Us < 0 we have

1Ek = 1

4

ρ1ρ2(1 − U∗)U∗
ρ1(1 − U∗) + ρ2U∗

(U1 − U2)
21x for Us < 0. (13)

Because the kinetic energy variation in the shock layer perturbs the flow motion, all noises
generated in the shock region propagate downstream. The ratio of the energy variation
1Ek · 1x to the total downstream energy densityẼ2 in each cell is

1Ek

Ẽ2 · 1x
=

1
4

ρ1ρ2U∗(1−U∗)
ρ1U∗+ρ2(1−U∗)

(U1 − U2)
2

1
2ρ2(U2 + Us)2 + 1

γ−1 P2
for Us > 0; (14)

similarly,

1Ek

Ẽ2 · 1x
=

1
4

ρ1ρ2(1−U∗)U∗
ρ1(1−U∗)+ρ2U∗

(U1 − U2)
2

1
2ρ2(U2 + Us)2 + 1

γ−1 P2
for Us < 0. (15)

The energy fluctuation ratios in (14) and (15) depend mainly on the relative shock speed
and velocities. Because of the independence of1Ek/Ẽ2 ·1x on the numerical cell size1x,
the postshock oscillations can never be eliminated by refining the mesh. Figure 4 is the plot
of relative energy variation1Ek/Ẽ2 · 1x versus the relative shock speed Sign(Us)U∗ for
different Mach numbers. The relative energy fluctuation is smaller at both lower and higher
shock speeds. From the definition of total energy densityE = 1

2ρU2 + (1/(γ − 1))P, we
can derive the energy variation

1E = ρU1U + 1

2
U21ρ + 1

γ − 1
1P.

Therefore, usingC2 ∼ γ1P/1ρ and the Riemann invariant1U ∼ 1P/ρC, we have

1E ∼ 1ρ

( |U |C
γ

+ 1

2
U2 + C2

γ (γ − 1)

)
,
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FIG. 4. Relative energy variations1Ek/Ẽ2 · 1x versus relative shock speed Sign(Us)U∗ for different Mach
numberM ; dash-dotted lineM = 3.0, solid lineM = 20.0.

from which the density fluctuation in the downstream can be obtained,

1ρ

ρ2
= 1

ρ2

[(
1Ek

1x

)/( |(U2 + Us)|C2

γ
+ 1

2
(U2 + Us)

2 + C2
2

γ (γ − 1)

)]
.

Figure 5 is the plot of density fluctuation for different Mach numbers. The numerical ob-
servations presented in [2, 10] confirm qualitatively the above theoretical analysis, where
there is about 3–5% density variation. In real flow computations, the fast moving shock
creates high frequency modes which are decaying much faster than low frequency modes
due to the dissipation in both gas evolution and projection stage. As a result, the observa-
tional amplitude in the density variation has to be modified by considering the numerical
dissipation in the whole downstream region. Also, the shock layer is smeared over several
mesh points and the intermediate states in the shock layer are different from the upstream
and downstream flow conditions. The final observation should be a statistical averaging
over all possible states in the shock layer.

Remarks. The postshock oscillations have been well-explained in the literatures [2, 6,
7, 14]. The current study is based on the projection dynamics rather than specific schemes.
In order to understand this problem further, we need to consider the real physical properties
in the shock region. Most shock capturing schemes smear the shock layer over a few grid
points. The transition region in the shock layer has to be considered as points inside a shock
structure. In other words, the intermediate points have intrinsic physical dissipative charac-
ter, and the flux calculation across each cell interface has to be based on the nonequilibrium
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FIG. 5. Relative density variations1ρ/ρ2 versus relative shock speed Sign(Us)U∗ for different Mach number
M ; dash-dotted lineM = 3.0, solid lineM = 20.0.

Navier–Stokes equations. So, the idea of solving the Euler equations in this region is not
physically appropriate [14]. For example, in the first-order BGK scheme, the nonequilib-
rium Boltzmann equation is solved, which gives sharp and oscillation-free shock transition
[19].

To have a consistent dissipative mechanism for the flux function in the numerical shock
region is critical for any high resolution schemes; otherwise gigantic amount of viscosity is
needed to smear a shock layer in order to get a smooth transition. It is reasonable for Karni
and Canic to add viscosity in Roe’s Riemann solver to reduce the amplitude in the postshock
oscillations [7]. However, without a viscous governing equation for the construction of
numerical shock structure, it is very difficult to determine the amount of dissipation needed.
Arora and Roe concluded that the oscillation is due to the fact that the intermediate states in
the shock regions are not located on the Hugoniot curve [2]. This conclusion is based mainly
on the Euler equations. For the viscous governing equations,the states inside the shock layer
indeed would not stay on the Hugoniot curve, but they will not generate oscillations if the
dissipative term in the flux function can generate a smooth shock transition, such as the
BGK scheme [19].

In conclusion, the dynamical effects in the projection stage for the nonlinear system pro-
vides the unsteady dissipative mechanism to transfer kinetic energy into thermal energy. This
feature is only observed in the nonlinear system. It seems that we have to change the idea that
any good numerical techniques for solving the linear wave equation(Ut + aUx = 0) could
be extended by a simple mechanism into equally good numerical techniques for solving
system of nonlinear conservation lawsUt + F(U)x = 0.
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FIG. 6. 2D Riemann problem.

4. DENSITY FLUCTUATION IN 2D SHEAR WAVE

The idea of projection dynamics presented in Section 2 can be used to explain the density
fluctuations in the 2D shear wave. First, let us consider a 2D test case, where the initial
flow conditions are shown in Fig. 6 [5]. From these initial conditions, three waves will be
formed. They include a shock, a slip line, and an expansion fan.

Using a second-order TVD scheme [15], the density distributions across these waves in
the y direction are shown in Fig. 7, whereM = 7 is used for the initial Mach number for
the flow in the upper part. The circles are numerical solutions and the solid lines are exact
solutions.

The density fluctuation around slip line in the above figure is a common numerical phe-
nomenon for all shock capturing schemes. In order to understand this, we have to consider
the projection dynamics again in the 2D case. As a simple model, we consider a numerical
cell which includes the slip line, as shown in Fig. 8. Here the velocities in the direction
parallel to the cell interface are not equal,V1 6= V2, due to the slip condition andU1 = U2

FIG. 7. Density distribution for the case with Mach numberM = 7, where the solid line is the exact solution.
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FIG. 8. Slip line inside a numerical cell.

holds in the normal direction. During the dynamical averaging, the kinetic energy is not
conserved. Based on the similar analysis in the 1D case, we can get the kinetic energy loss
in the averaging process,

1Ek = 1

4

ρ1ρ2

ρ1 + ρ2
(V2 − V1)

2, (16)

where the location of slip line is assumed to be at the center of the numerical cell. From the
total energy conservation, the lost kinetic energy has to be transferred into thermal energy
and heats the gas around the slip region. The magnitude of heating depends on the relative
slip velocities. Due to this heating effect, the temperature and pressure around the slip line
will increase. As a consequence, the increased pressure pushes the gas away from each
other, and a density sink is formed, as shown in Fig. 7. The artificial heating effects can
also be regarded as a result from the friction between different fluids around the slip line. In
the 1D case, we cannot observe this phenomenon, because the equal velocity,U1 = U2, at
contact discontinuity prevents the kinetic energy from being transferred into thermal energy.
In conclusion, the projection stage introduces a viscous effect and an artificial heating effect
in multidimensional flow calculations. The artificial heating effects have also been studied
by Noh [12], where the Lagrangian formulation with the explicit form of artificial viscosity
automatically creats heating effects next to the boundary.

5. PRESSURE WIGGLES AROUND MATERIAL INTERFACE

IN TWO-COMPONENT GAS FLOW

It is observed that for conservative Godunov-type schemes, pressure wiggles at mate-
rial interface are generated [1]. There exist many explanations for this, such as [8, 9] and
references therein. Instead of focusing on the specific flow solver, we will concentrate on
the projection dynamics again. Suppose a material interface is located inside a numeri-
cal cell and separates the whole cell into two parts with volumesV1 and V2, as shown
in Fig. 9. The mass, momentum, energy densities, and specific heat ratio in both parts
are (

ρ(1), ρ(1)U (1), E(1), γ (1)
)

and (
ρ(2), ρ(2)U (2), E(2), γ (2)

)
.
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FIG. 9. Multicomponent subcell mixing at material interface.

The material interface is a contact discontinuity with equal velocities,U (1) =U (2), and equal
pressures,P(1) = P(2). In order to simplify the derivation, we assumeU (1) =U (2) = 0 here.
This assumption will not change the applicability of the following analysis to the general
cases around a moving material interface.

The projection stage mixes different components and the mixing is based on the total
mass, momentum and energy conservations. Since the momentum equation can be ignored
here due to the equal velocities in the two components, the mass and energy conservations
will be used. They are

ρ(1)V1 + ρ(2)V2 = ρ(V1 + V2) (17)

and

E(1)V1 + E(2)V2 = E(V1 + V2). (18)

For a perfect gas, energy conservation reduces to

kT(1)

γ (1) − 1

ρ(1)V1

m1
+ kT(2)

γ (2) − 1

ρ(2)V2

m2
= T

(
k

γ (1) − 1

ρ(1)V1

m1
+ k

γ (2) − 1

ρ(2)V2

m2

)
, (19)

wherek is Boltzmann constant,m1 andm2 are the molecular masses for gas 1 and gas 2,
T (1), T (2), andT are the temperatures of the initial two components and the final equilibrium
state. From Eq. (19), the common temperature after mixing (with the assumptionm1 = m2)
can be obtained,

T = (γ (2) − 1)T (1)ρ(1)V1 + (γ (1) − 1)T (2)ρ(2)V2

(γ (2) − 1)ρ(1)V1 + (γ (1) − 1)ρ(2)V2
. (20)

The final pressurẽP in the whole cell(V1 + V2) becomes

P̃ = P̃
(1) + P̃

(2)

= V1

V1 + V2

T

T (1)
P(1) + V2

V1 + V2

T

T (2)
P(2)

= T P

V1 + V2

(
V1

T (1)
+ V2

T (2)

)
, (21)
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whereP̃
(1)

and P̃
(2)

are the partial pressure contributions from components 1 and 2 gases
separately after mixing, andP = P(1) = P(2) are the initial individual gas pressures before
mixing. Substituting Eq. (20) into Eq. (21), we obtain

P̃ = P
V1T (2) + V2T (1)

T (1)T (2)(V1 + V2)

(γ (2) − 1)T (1)ρ(1)V1 + (γ (1) − 1)T (2)ρ(2)V2

(γ (2) − 1)ρ(1)V1 + (γ (1) − 1)ρ(2)V2
. (22)

Obviously, P̃ 6= P in general cases, which means that the final pressure after mixing is
different from the initial pressure at the material interface. Once the pressure variation is
formed near the material interface, it subsequently generates waves and contaminates the
flow field . For a single component gas,(γ (1) = γ (2)), Eq. (22) givesP̃ = P automatically,
and the equal pressure is kept. An alternative explanation for the above phenomena can be
the following. For an ideal gas, each degree of freedom in a molecule has an equal amount of
energy which is proportional to temperatureT . The total internal energy for each molecule
is e(1) = kT(1)/(γ (1) − 1) for component 1 gas, ande(2) = kT(2)/(γ (2) − 1) for component
2 gas. Suppose that by collisions these two molecules exchange their energies and equalize
their temperature to a common oneT . From energy conservation, we have

k1T (1)

γ (1) − 1
+ k1T (2)

γ (2) − 1
= 1E(1) + 1E(2) = 0. (23)

However, the pressure change due to temperature variation is

1P ∼ k1T (1) + k1T (2) = k
γ (1) − γ (2)

γ (1) − 1
1T (1)

= (
γ (1) − γ (2)

)
1E(1) = (γ (2) − γ (1)

)
1E(2), (24)

which cannot be zero ifγ (1) = γ (2) is not satisfied.

6. CONCLUSION

In this paper, we have analyzed the projection dynamics in Godunov-type schemes. The
projection process is a purely numerical aspect due to the limited cell size and time step.
However, it provides dynamical influence on the flow motion. Based on this, a few anoma-
lous phenomena are explained, which include postshock oscillations, density fluctuation at
a slip line, and pressure wiggles at a material interface. It is concluded that the schemes
based on the exact Riemann solver will not yield robust and accurate schemes, where the
projection errors cannot be eliminated by considering the inviscid Euler solution in the gas
evolution stage. Unless the fluxes in the Riemann solver are augmented by consistent phys-
ical dissipation, any Godunov-type schemes will be flawed. Other spurious solutions, such
as carbuncle phenomena and odd–even decoupling, can be explained by the combination
of the projection and gas evolution dynamics. It is realized that the carbuncle phenomena
and odd–even decoupling is intrinsically rooted in the Godunov method once the inviscid
Euler equations are solved in the gas evolution stage [18]. So, a positive suggestion from
this paper is that we have to find and solve a viscous governing equation directly in the gas
evolution stage in order to avoid spurious solutions, rather than keep on fixing the existing
flux function. The modification of the exact Riemann solver to get more robust numerical
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schemes is actually a process to solve some other equations, although we do not explicitly
mention it. The gas-kinetic BGK model probably provides such an equation [17].

APPENDIX A: THE DERIVATION OF THE GOVERNING EQUATIONS

Figure 1 outlines the projection process in an isolated cell from the initial flow distribution
to the final constant state. This process is finished in a whole time step1t . In the following,
we are going to derive the approximate governing equations in this process. At end, the
convective fluxes from the gas evolution stage will be added.

(1) Continuity equation.In subcellxε[xj −1/2, xj −1/2 + α1x], density is changed from
the initialρ1 to the final ¯ρ = αρ1+ (1−α)ρ2 through the mass fluxes atx = xj −1/2+α1x.
If we assume that the mass flux is equal toη1ρx, we have

ρ̄ − ρ1

1t
= η1ρx

α1x
= η1(ρ2 − ρ1)

α1x 1
21x

, (25)

from which the mass diffusion coefficientη1 can be obtainedη1 = 1
2α(1− α)((1x)2/1t).

(2) Momentum equation.In subcellxε[xj −1/2, xj −1/2 + α1x] again, the initial momen-
tum ρ1U1 is changed to ¯ρŪ in a time step1t . Denoting the viscous flux asη2Ux, we
have

ρ̄Ū − ρ1U1

1t
= αρ1U1 + (1 − α)ρ2U2 − ρ1U1

1t
= η2Ux

α1x
= η2(U2 − U1)

α1x 1
21x

. (26)

With the assumption

ρ2U2 − ρ1U1 ∼ ρ(U2 − U1),

we have

η2 = 1

2
α(1 − α)

(1x)2

1t
ρ.

(3) Energy equation.The dissipative effect in the energy equation is to transfer the kinetic
energy into the thermal energy. In the whole numerical cell, we can write down the energy
dissipation process as

∂Ek

∂t
= (η3UUx)x.

From the above equation and Eq. (6), we have

1Ek

1t
=

1
4

αρ1(1−α)ρ2
αρ1+(1−α)ρ2

(U2 − U1)
2

1t
= η3

(U2 − U1)Ux
1
21x

= η3
(U2 − U1)

2

1
21x 1

21x
.

So, with the assumption

ρ1ρ2

αρ1 + (1 − α)ρ2
∼ ρ,
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we obtain

η3 = 1

16
α(1 − α)

(1x)2

1t
ρ.

While the projection stage provides the mechanism to smear the subcell structure, the
gas evolution stage accounts the external influence through the numerical fluxes across the
cell interface. If the Euler equations are exactly solved in the gas evolution stage, the mass,
momentum, and energy transports through a cell interface are(ρU, ρU2 + P, EU + PU).
Combining the Euler fluxes with the diffusion and dissipative terms in the projection stage,
we can get the “Navier–Stokes” equations for the updating of flow variables in the Godunov-
type schemes,

ρt + (ρU )x = ερxx,

(ρU )t + (ρU2 + P)x = ε(ρUx)x,

Et + (EU + PU)x = 1

8
ε(ρUUx)x,

where

ε = 1

2
α(1 − α)

(1x)2

1t
.
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