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There are two stages in the first-order Godunov-type schemes to update flow
variables: the gas evolution stage for the numerical fluxes across a cell interface
and the projection stage for the reconstruction of constant state inside each cell.
Ideally, the evolution stage should be based on the exact Euler solution, the so-called
Riemann solver. In this paper, we will show that some anomalous phenomena, such
as postshock oscillations, density fluctuation in the 2D shear wave, and pressure
wiggles at material interface in multicomponent flow calculations, are generated by
dynamical effects in the projection stage. Based on a physical model, we are going to
analyze qualitatively the averaging mechanism and compare our theoretical analysis
with numerical observations.g 1998 Academic Press

1. INTRODUCTION

Inthe past two decades there has been tremendous progress in the development of r
ical methods for solving the Euler equations. The most promising method is the Godu
scheme, where the Riemann solution is used for the flux evaluation, followed by the prc
tion stage to construct a constant state inside each cell. Although the Godunov-type sch
give robust and accurate numerical solutions in most cases, they can on occasions fail
miserably. Even the first-order Godunov method may give anomalous results, i.e.
shock oscillations, pressure wiggles in the multicomponent interface [6, 7, 14], carbu
phenomena and odd—even decoupling [11], and pressure fluctuations in the 2D shear
[5]. In an important paper, Quirk catalogued a number of situations in which anomal
behavior is known to occur [13]. Since then, many papers have attempted to explain t
kinds of phenomena. For example, for the postshock oscillation, there exist many pa
related to its observation and explanation [3, 10, 13, 14]. Arora and Roe pointed out
the intermediate states inside the shock layer do not lie on the Hugoniot curve [2]. He
the Riemann solver generates a whole fan of waves and induces the postshock oscilla
Jin and Liu explained this in the context of traveling wave solution and suggested tha
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unsteadiness in the momentum spike is the cause of the oscillations [6]. Karni and C
noticed that upwind scheme and Lax Friedrichs scheme behave differently here. They
cluded that the vanishing viscosity in Roe’s scheme at the shock region contributes t
oscillations and derived the modified parabolic equations in the shock layer [7].

The current work benefits from all previous papers. Instead of analyzing a specific
function, we are focusing on the study of dynamical effects on the projection stag
Godunov-type schemes. In order to understand the numerical behavior of the fluid, a phy
model for the dynamical averaging is constructed. It is well known that the first-or
Godunov method gives dissipative humerical solutions, and it is usually interpretec
artificial viscosity effects. If the numerical fluxes are based on the exact Euler solut
the dissipation must be added somehow in the projection stage. Our focal point in
paper is to figure out qualitatively the projection mechanism, from which a few anomal
phenomena are explained, which include postshock oscillations, density fluctuation ir
2D shear wave, and pressure wiggles at material interface in multicomponent gas
Since the projection process is intrinsically included in all shock capturing schemes, tl
phenomena should be universal. We fully agree with the conclusions obtained so far the
possible cure for the postshock oscillation is to solve the viscous governing equation dire
in the gas evolution stage to dissipate the oscillation generated in the projection stage. .
the projection dissipation depends on the velocity difference, in the two-dimensional c
it will be mesh-oriented. As a result, the inhomogeneity of projection dissipation and
inviscid Euler solution in gas evolution automatically trigger the shock front instabilities
the 2D case, such as the carbuncle phenomena and odd—even decoupling in the Go
method [18].

In this paper, Section 2 analyzes the physical dynamics in the projection stage. Sect
gives an explanation of postshock oscillations. Section 4 outlines the physical reason
the density fluctuation in the 2D shear flow, and Section 5 explains the pressure fluctua
at material interface in multicomponent flow calculations. The last section is the conclus

2. PROJECTION DYNAMICS

We consider shock capturing schemes for the one dimensional Euler equations:

Pt + (pU)x =0,
(pU); + (pU? + P)y = 0, 1)
E: + (EU + PU)y, =0,

wherep is the densitylJ is the velocity,oU is the momentumi: = %pU 2 4 peis the total
energygis the internal energy, aridis the pressure. We assume that the gayidaav gas,
i.e.P=(y — Dpe, 1 <y < 3.In the following, we are going to construct an underlyin
physical model for shock-capturing schemes in solving the above equations. Based or
some observed artifacts will be explained in the following sections.

In order to understand the dynamic effects in the projection stage, let us constrt
physical model. This model is general and is not limited to the flows with shocks. Supr
there is a discontinuity in the flow distribution, and the location of the discontinuity is insi
the numerical celj. The left and right states inside c¢lare(p1, U1, E1) and(p2, U, Ep)
in regions Kj_1/2, Xj—1/2 + aAX] and [Xj_1/2 + ¢ AX, Xj11/2], respectively, where\x is
the cell size (see Fig. 1). In the following, we first assume %
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FIG. 1. Subcell mixing in the averaging stage.

The projection averaging is based on the conservation of total mass, momentum,
energy,

1 +1 -
2,01 2,02—,0,,
1 1 -
5,01U1+ E,Ozuz = pUj, (2
1 1 -
~Ei1+-BEx=E,
2 1+2 2 |

wherep;, EU_J E_J are the averaged mass, momentum, and energy densities jn Esim
the above equations, we have the average velocity,

— u u
O = ™ 1+ p2 2

3
J p1+ P2 3
So, after averaging, the kinetic energy in gelbecomes
_ 1 -
Ei= 7 (o1 + p2)Uf 4)
However, before the averaging the original kinetic energy is
1 1
Ex = Z,O1U12 + ZP2U22~ )
From Eq. (4) and Eq. (5), we knot > E, and the lost kinetic energy is
- 1
AEx = Ex— Ex = -2, —u,2. (6)
4 p1+ p2

Since the total energy is conserved in the projection stage, the decrease in kinetic el
must correspond to the increase in the thermal energy. So, the projection is actua
dissipative process to translate kinetic energy into thermal energy. From thermodynar
we can show that the entropy is increased in the above process.The transition from il
density distributiong; andp, to the final uniform densit% (p1 + p2) is achieved through
an equivalent mass diffusion process.
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For the Godunov method, the flow variables inside each cell are updated througt
fluxes from the gas evolution stage and the averaging in the projection stage. If the
Euler equations are solved in the gas evolution stage, the flow behavior in the whole upd
process can be approximately described by the equations (the detailed derivation is |
in Appendix A)

pt + (pU)x = €pxx,

(PU)e + (U2 + P)x = €(pUsx, 7)
B+ (EU + PU) = ée(puuox,

where the flux termgopU, pU? + P, EU + PU) are obtained from the Riemann solution:
in the gas evolution stage and the dissipative tef@ngy, € (0Ux)x, %e(pU Uy)x) are from
the projection stage. The viscous coefficiers

(AX)?
At ®)

which depends on the location of the discontinuity as shown in Fig. 1. The dependence
onAx andAt is due to the fact that the actual averaging process is taking place dynamic
over a whole time step inside each cell, although it can be interpreted as an instantar
process taking place at the end of each time step.

The diffusive and dissipative properties in the above model are not directly related tc
specific Euler fluxes across each cell interface. Using Gilbarg and Paolucci’s technique
the stationary shock structure can be obtained from Eq. (7) [19], where the main conclus
are:

1
€~ éa(l—a)

(1) p increases monotonically whilg decreases, asvaries from—oo to 4+o00;
(2) the momentunpU is not a monotonic function of;
(3) the maximum value of momentuptJ is independent of.

Points (1) and (2) have been analyzed based on the isentropic model in [6]. As poi
out by Jin and Liu, the momentum spike is solely related to the mass diffusion term in
continuity equation. Later, Karni and Canic found out that the the momentum spike ha
direct contributions to the postshock oscillations [7]. Based on Eq. (7), we can explain
fact that the momentum peak valgeU )max is @ constant. From the continuity equation
we have

(U )max ~ €(0x)max-
Since the density variation on the leading order across a shock layer is proportional to

p2—p1 (P2 — p1)? _ Calp2 — p1)?
85X lp1 €p1

(Px)max ™~

)

whereéx is the shock thickness$,is the mean free patho;, p2) are the upstream and
downstream densities, aid is the upstream sound speed. G) ) maxCan be approximated
as

Ci(p2 — p1)?
L1 '

(PU)max ~ €(0x)max ~
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which is independent of. So, even with a time-dependent viscous coefficiersuch as
in the moving shock casépU )max keeps a constant value . Theoretically, the maximur
momentum peak valuéoU)nax should be a universal constant for all shock capturin
schemes if only projection dissipation is involved, such as the Godunov method. For
BGK scheme, the constant momentum peak value has been observed [19] for both stati
and moving shocks. All shock capturing schemes cannot converge to the Euler solutio
[*°-norm.

3. POSTSHOCK OSCILLATIONS

The postshock oscillations have attracted much attention in the past years. The
detailed account of this problem was given by Colella and Woodward [3]. After that Robs
[14] compared different schemes and pointed out that the oscillations would occur for
schemes with flux functions that give “exact” shock resolution such as Godunov and R
schemes. More recently, Quirk [13], Jin and Liu [6], Arora and Roe [2], and Karni a
Canic [7] have contributed greatly to the understanding and control of the oscillation
this paper, we are concentrating on the projection dynamics to understand this phenor

As analyzed in [19], there is a stationary shock structure from Eq. (7) for each cons
€. The same conclusion has been obtained for the isentropic equations[@lett really
a constant, such as in the stationary shock case, there would be no postshock oscillg
However, for moving shocks, the discontinuity can be located at any place inside eact
(Xj—1/2 + @ AX) and its location is changing with time. As a consequeade the Eq. (7)
is a function of timel. For a moving shock with constant speed,) is a periodic function,
and the period is equal to the time interval for the shock to cross a numerical cell,

ro 8%
Us

whereUs is the shock speed. So, the pulsating shock structure from Eq. (7) with unsteady
cosity coefficient generates postshock oscillations. Similar conclusion have been obtz
in [6].

The continuing variation of kinetic energy due to averaging in the shock layer exer
forcing term on the downstream flow motion, which is similar to perturbing one end
a string. The oscillations are generated and propagate along the string. As pointed o
Karni and Canic [7], this behavior is only related to the momentum spike superficia
Physically, even without the mass diffusion term in the continuity equation (7) and w
monotonic momentum distribution, the postshock oscillations will still be generated du
the unsteady nature in the momentum and energy equations. This is probably the reaso
the momentum spike can be eliminated through a simple transformatiesn pu — €dy p,
but the postshock oscillations will remain the same [6]. We can validate the above ok
vation in the following example. If applying the projection model to the moving conte
discontinuity wave, we can get the same mass diffusion term in the continuity equa
and consequently obtain the momentum spike. However, we will not find any numer
oscillations here, because there is no time-dependent nonlinear dissipative mechani
the momentum and energy equations. Due to the equal veldditiedJ, on both sides of
the contact discontinuityA Ex = 0 in Eq. (6) holds.

Based on the projection dynamics, we can explain the relation between the posts
oscillation amplitude and the shock speed. As observed in [2, 10], the very slow and
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FIG. 2. Stationary shock located at= 0.

moving shocks generate less oscillations. In order to qualitatively evaluate the rela
let us consider the following model. Initially a stationary shock is located at cell interfe
x = 0 with distributions(p», U, E») and(p1, Uy, E;) on the left and right sides, as shown
in Fig. 2. The upstream and downstream flow conditions are

p1=1,
U =-1 x>0, (9)

and
_ (y+Dpwm?
T2+ (- oM

y—1 2
U, = + U;, x<0, 10
2 <y+1 W+DMJ ! (10)

2 -1
P2=< Y m2_Y >P1,
y+1 y+1

P2

whereM is the upstream Mach number. From the above flow conditions, we can get
sound speed8; andC, on both sides,

Ci=+VvPi/p1, Co=+/yP2/pa.

For a moving shock, the flow velocities will be changed; il&.— U; + Us andU; —
U, + Us, whereUs is the shock speed. After each time si&p the shock front will be
located atJsAt, see Fig. 3. In the numerical cell with shock, the lost kinetic energy due
the averaging is

_ 1 p1AtUgpr(AX — AtUg)

AE == U; — Uy)? forUg > 0. 11
K 4,01AtUs+p2(AX—AtUS)( 1~ U2) s~ (11)

Based on the CFL condition (CFL numberl), the time step is

AX

At = s
Max(|U1 + Us| + Cla |U2 + Us| + CZ)




418 XU AND HU

(Pl,U1+Us,E1)

s Us

(P2,U2+U3,Ez)

Az UsAt=—— Az — U, At —

FIG. 3. Moving shock with speetls at time At.

and Eq. (11) goes to

1 /01,02U*(1 -U, 2
Ex= - Ui — Uy)“Ax forU 0, 12
= amU. 4 ppa-uy T °7 (12

where
U. — [Us|
* 7 Max(JUg + Us| + Cy, [U2 + Ug| + Cp)
Similarly, for Us < 0 we have

1 :01/02(1 - U)U, 2
AEc= - U; — Up)*Ax  forUg < O. 13
AUyt pu, T s (13)
Because the kinetic energy variation in the shock layer perturbs the flow motion, all no
generated in the shock region propagate downstream. The ratio of the energy vari

AE - AX to the total downstream energy density in each cell is

1 _p1p2U,(1-U,) 2
AEx _ dpUipaug Y1 —U2)

~ = forUs > O; 14
Ez-AXx 302Uz +Us)? + -1 P ° -
similarly,
1_pipp(1-U,)U, 2
AE 1o (Ul — Uy
k_ _ AmA-UotpU, 71 for Us < 0. (15)

Ez - AX - %,OZ(UZ + Us)2 + %—1'32

The energy fluctuation ratios in (14) and (15) depend mainly on the relative shock sy
and velocities. Because of the independenct Bf/ E,- Ax on the numerical cell sizAx,
the postshock oscillations can never be eliminated by refining the mesh. Figure 4 is the
of relative energy variation Ey/E, - Ax versus the relative shock speed SidgU,. for
different Mach numbers. The relative energy fluctuation is smaller at both lower and hig
shock speeds. From the definition of total energy derisity %,oU2 + 1/(y — )P, we
can derive the energy variation

1 1
AE = pUAU + ZU%Ap + ——AP.
2 y—1

Therefore, usingC? ~ y AP/Ap and the Riemann invariatU ~ AP/pC, we have

uic 1 C2
AE~A,0<L+—U2+7>,
Y 2 Yy =1
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FIG. 4. Relative energy variationaE, /E, - Ax versus relative shock speed Sigig)U, for different Mach
numberM; dash-dotted linéM = 3.0, solid lineM = 20.0.

from which the density fluctuation in the downstream can be obtained,

Ap 1 [/AEg |(Us +Ug)|C, 1 ) C3 )}
Lo (= e L ST L 2 (U + Us —=2 .
p2 P2 KAX)/< Y +2(2+ )+V()/—1)

Figure 5 is the plot of density fluctuation for different Mach numbers. The numerical
servations presented in [2, 10] confirm qualitatively the above theoretical analysis, wl
there is about 3-5% density variation. In real flow computations, the fast moving sh
creates high frequency modes which are decaying much faster than low frequency
due to the dissipation in both gas evolution and projection stage. As a result, the obsi
tional amplitude in the density variation has to be modified by considering the numer
dissipation in the whole downstream region. Also, the shock layer is smeared over se
mesh points and the intermediate states in the shock layer are different from the upst
and downstream flow conditions. The final observation should be a statistical avera
over all possible states in the shock layer.

Remarks. The postshock oscillations have been well-explained in the literatures [2
7, 14]. The current study is based on the projection dynamics rather than specific sche
In order to understand this problem further, we need to consider the real physical prope
in the shock region. Most shock capturing schemes smear the shock layer over a few
points. The transition region in the shock layer has to be considered as points inside a
structure. In other words, the intermediate points have intrinsic physical dissipative che
ter, and the flux calculation across each cell interface has to be based on the nonequilil
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FIG.5. Relative density variation&p/p, versus relative shock speed Sigg)U, for different Mach number
M; dash-dotted liné = 3.0, solid lineM = 20.0.

Navier—Stokes equations. So, the idea of solving the Euler equations in this region is
physically appropriate [14]. For example, in the first-order BGK scheme, the nonequi
rium Boltzmann equation is solved, which gives sharp and oscillation-free shock transi
[19].

To have a consistent dissipative mechanism for the flux function in the numerical sh
region is critical for any high resolution schemes; otherwise gigantic amount of viscosit
needed to smear a shock layer in order to get a smooth transition. It is reasonable for |
and Canic to add viscosity in Roe’s Riemann solver to reduce the amplitude in the posts
oscillations [7]. However, without a viscous governing equation for the construction
numerical shock structure, it is very difficult to determine the amount of dissipation neec
Arora and Roe concluded that the oscillation is due to the fact that the intermediate stat
the shock regions are not located on the Hugoniot curve [2]. This conclusion is based m:
on the Euler equations. For the viscous governing equations,the states inside the shocl
indeed would not stay on the Hugoniot curve, but they will not generate oscillations if
dissipative term in the flux function can generate a smooth shock transition, such a:
BGK scheme [19].

In conclusion, the dynamical effects in the projection stage for the nonlinear system
vides the unsteady dissipative mechanism to transfer kinetic energy into thermal energy.
feature is only observed in the nonlinear system. It seems that we have to change the ide
any good numerical techniques for solving the linear wave equétlp# aU, = 0) could
be extended by a simple mechanism into equally good numerical techniques for sol
system of nonlinear conservation laWs+ F(U)x = 0.
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FIG. 6. 2D Riemann problem.

4. DENSITY FLUCTUATION IN 2D SHEAR WAVE

The idea of projection dynamics presented in Section 2 can be used to explain the de
fluctuations in the 2D shear wave. First, let us consider a 2D test case, where the i
flow conditions are shown in Fig. 6 [5]. From these initial conditions, three waves will
formed. They include a shock, a slip line, and an expansion fan.

Using a second-order TVD scheme [15], the density distributions across these wav
the y direction are shown in Fig. 7, wheM =7 is used for the initial Mach number for
the flow in the upper part. The circles are numerical solutions and the solid lines are €
solutions.

The density fluctuation around slip line in the above figure is a common numerical f
nomenon for all shock capturing schemes. In order to understand this, we have to con
the projection dynamics again in the 2D case. As a simple model, we consider a nume
cell which includes the slip line, as shown in Fig. 8. Here the velocities in the direct
parallel to the cell interface are not equé, = V-, due to the slip condition and; = U,

1.2

M=7
&8 s
O <
d
> D
0.8 \)
ey
OO 8
O
0.4 L
-0.6 0 0.6

FIG. 7. Density distribution for the case with Mach numidr= 7, where the solid line is the exact solution.
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FIG. 8. Slip line inside a numerical cell.

holds in the normal direction. During the dynamical averaging, the kinetic energy is
conserved. Based on the similar analysis in the 1D case, we can get the kinetic energ
in the averaging process,

1 p102 2

Bk = 491+ 02 (V2 = V)7, (16)
where the location of slip line is assumed to be at the center of the numerical cell. From
total energy conservation, the lost kinetic energy has to be transferred into thermal er
and heats the gas around the slip region. The magnitude of heating depends on the re
slip velocities. Due to this heating effect, the temperature and pressure around the slif
will increase. As a consequence, the increased pressure pushes the gas away fron
other, and a density sink is formed, as shown in Fig. 7. The artificial heating effects
also be regarded as a result from the friction between different fluids around the slip line
the 1D case, we cannot observe this phenomenon, because the equal w&jogity,, at
contact discontinuity prevents the kinetic energy from being transferred into thermal ene
In conclusion, the projection stage introduces a viscous effect and an artificial heating e
in multidimensional flow calculations. The artificial heating effects have also been stuc
by Noh [12], where the Lagrangian formulation with the explicit form of artificial viscosit
automatically creats heating effects next to the boundary.

5. PRESSURE WIGGLES AROUND MATERIAL INTERFACE
IN TWO-COMPONENT GAS FLOW

It is observed that for conservative Godunov-type schemes, pressure wiggles at r
rial interface are generated [1]. There exist many explanations for this, such as [8, 9]
references therein. Instead of focusing on the specific flow solver, we will concentrats
the projection dynamics again. Suppose a material interface is located inside a nur
cal cell and separates the whole cell into two parts with volumeand V,, as shown
in Fig. 9. The mass, momentum, energy densities, and specific heat ratio in both |
are

(p<1)’ pOUD ED, y<1>)
and

(02, pPU@ E@ @),
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FIG. 9. Multicomponent subcell mixing at material interface.

The material interface is a contact discontinuity with equal velocitlé® = U @, and equal
pressuresP® = P@  In order to simplify the derivation, we assutdé? =U @ =0 here.
This assumption will not change the applicability of the following analysis to the gene
cases around a moving material interface.

The projection stage mixes different components and the mixing is based on the
mass, momentum and energy conservations. Since the momentum equation can be i
here due to the equal velocities in the two components, the mass and energy conserv
will be used. They are

pPVL+ pPV, = p(V1 + Vo) (17)
and
EOV, + EPV, = E(V; + Vo). (18)

For a perfect gas, energy conservation reduces to

kT® p(l)Vl kT® p(Z)VZ k p(l)Vl k ,0(2)V2
= , (19
y@—1m  y@-1 m y@—-1m  y@-1 m

wherek is Boltzmann constantn; andm, are the molecular masses for gas 1 and gas
T®, T@ andT are the temperatures of the initial two components and the final equilibrit
state. From Eg. (19), the common temperature after mixing (with the assumptiom,)
can be obtained,

T (y(Z) —DTD Dy, + (y(l) — 1TV,
y@ =DpOVi+ (yD - 1)p?V,

(20)

The final pressur@> in the whole cell(V; + V,) becomes

P — |5(1) + IS(Z)
M T, Vo T
Vi+VoTO Vi+ Vs T®

TP (Vi W
_ 1, 2 21
Vi+V, (T<1> + T<2>> (21)

p®@
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whereP™ andP® are the partial pressure contributions from components 1 and 2 ga
separately after mixing, anl = P = P@ are the initial individual gas pressures befor
mixing. Substituting Eq. (20) into Eq. (21), we obtain

VlT(Z) + VZT(l) (V(Z) _ 1)T(1)p(1)\/1 + (y(l) _ 1)T(2)p(2)V2
TOTONM +Va)  (¥@ =DpDVi+ (y® - Dp@V;

pvl

=P

(22)

Obviously, P # P in general cases, which means that the final pressure after mixing
different from the initial pressure at the material interface. Once the pressure variatic
formed near the material interface, it subsequently generates waves and contaminat
flow field . For a single component gag, Y = y@), Eq. (22) gives® = P automatically,
and the equal pressure is kept. An alternative explanation for the above phenomena c
the following. For an ideal gas, each degree of freedom in a molecule has an equal amot
energy which is proportional to temperatdreThe total internal energy for each molecule
ise® =kT®/(y® — 1) forcomponent 1 gas, ar = kT®@ /(y@ — 1) for component
2 gas. Suppose that by collisions these two molecules exchange their energies and eq
their temperature to a common ofieFrom energy conservation, we have

KAT®  kAT®

— @D 2 _
a1t e = AEY+AE? =0 (23)

However, the pressure change due to temperature variation is

(2)
= (y© - y@)AED = (y(2> —y®)AE®, (24)

which cannot be zero i#® = y @ is not satisfied.

6. CONCLUSION

In this paper, we have analyzed the projection dynamics in Godunov-type schemes
projection process is a purely numerical aspect due to the limited cell size and time ¢
However, it provides dynamical influence on the flow motion. Based on this, a few anol
lous phenomena are explained, which include postshock oscillations, density fluctuati
a slip line, and pressure wiggles at a material interface. It is concluded that the sche
based on the exact Riemann solver will not yield robust and accurate schemes, whel
projection errors cannot be eliminated by considering the inviscid Euler solution in the
evolution stage. Unless the fluxes in the Riemann solver are augmented by consistent
ical dissipation, any Godunov-type schemes will be flawed. Other spurious solutions,
as carbuncle phenomena and odd—even decoupling, can be explained by the combil
of the projection and gas evolution dynamics. It is realized that the carbuncle phenon
and odd-even decoupling is intrinsically rooted in the Godunov method once the invi
Euler equations are solved in the gas evolution stage [18]. So, a positive suggestion
this paper is that we have to find and solve a viscous governing equation directly in the
evolution stage in order to avoid spurious solutions, rather than keep on fixing the exis
flux function. The modification of the exact Riemann solver to get more robust numer
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schemes is actually a process to solve some other equations, although we do not exp
mention it. The gas-kinetic BGK model probably provides such an equation [17].

APPENDIX A: THE DERIVATION OF THE GOVERNING EQUATIONS

Figure 1 outlines the projection process in anisolated cell from the initial flow distributi
to the final constant state. This process is finished in a whole time\dtdp the following,
we are going to derive the approximate governing equations in this process. At end
convective fluxes from the gas evolution stage will be added.

(1) Continuity equationln subcellxe[X;_1/2, Xj—1/2 + ¢ AX], density is changed from
the initial p; to the finalp = ap1 + (1—a) p, through the mass fluxesat= Xj_1/2 +a AX.
If we assume that the mass flux is equahipy, we have

p—p1 _ mpx _ ni(p2— p1)
At aAX  aAXJAX

: (25)

from which the mass diffusion coefficient can be obtained; = %(x(l —a)((AX)?/At).

(2) Momentum equatiorin subcellxe[X;j 1,2, Xj 1,2 + « AX] again, the initial momen-
tum p;U; is changed t@U in a time stepAt. Denoting the viscous flux agUy, we
have

pU — p1Us _ ap1Us + (1 — a) poUz — p1Us _ n2Ux _ n2(Uz — Uy)
At At aAX  aAXFAX

(26)

With the assumption

p2U2 — p1Ug ~ p(Uz — Uy),
we have

(AX)?
At

1
N2 = Eot(l —a) 0.
(3) Energy equationThe dissipative effectin the energy equation is to transfer the kine
energy into the thermal energy. In the whole numerical cell, we can write down the enc
dissipation process as

0 Ex

W = (n3UUy)x.

From the above equation and Eg. (6), we have

1 (1-a) 2
AEc  ZaprdapY2—UD® yo B2 = UnUx | (U= Up?
At At T IAx *Iaxiax

So, with the assumption

£102
apr+ (1—a)p2

~ P,
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we obtain

1 a (AX)?
8= 1m0

0.

While the projection stage provides the mechanism to smear the subcell structure
gas evolution stage accounts the external influence through the numerical fluxes acro
cell interface. If the Euler equations are exactly solved in the gas evolution stage, the n
momentum, and energy transports through a cell interfacedtepU? + P, EU + PU).
Combining the Euler fluxes with the diffusion and dissipative terms in the projection stz
we can get the “Navier—Stokes” equations for the updating of flow variables in the Godur
type schemes,

P+ (PU)X = €Pxx»
(PU) + (pU? + P)x = €(pUx)x,

1
éé(pu UX)Xa

E: + (EU + PU)x

where

1 1 )(Ax)z
G—EOK( —o AL
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